Deformation of Schemes

Cailan Li

September 29th, 2021

1 The Affine Case

Lemma 1.1. Let $f: C \rightarrow R$ be an object of $A-A l g / R$ and let suppose I, the kernel of f, is a square-zero ideal in C. Then any ring homomorphism that is a section $s: R \rightarrow C^{1}$ will give a ring isomorphism $\sigma: R[I] \xrightarrow{\sim} C$ where $\sigma(r, i)=s(r)+i$ with inverse $\sigma^{-1}(c)=(f(c), c-s f(c))$

Proposition 1.2. Suppose we have a surjection $C \rightarrow R$ with square zero kernel I and suppose we have a ring automorphism of the form

Then φ must be of the form $\varphi(i+r)=i+r+\delta(r)$ where $i \in I, r \in R$ and $\delta: R \rightarrow I$. Furthermore δ is a derivation.

Proof. We know $\varphi(i)=i$ while $\varphi(r)=r \bmod I$ and so $\varphi(r)=r+\delta(r)$ for $\delta: R \rightarrow I$.
Proposition 1.3. Suppose that $X=\operatorname{Spec} B$ is a smooth affine R-scheme and $\pi: R[I] \rightarrow R$ with kernel I. Then $\operatorname{Def}_{X}^{\mathrm{smooth}}(R, \pi)$ consists of one element.

Proof. We first give an element of $\operatorname{Def}_{X}^{\text {smooth }}(R[I], \pi)$. Consider $g: R[I] \rightarrow R[I] \otimes_{R} B$ where $(r, i) \mapsto$ $(r, i) \otimes 1$ and where $R \rightarrow R[I]$ by $r \mapsto(r, 0)$, so is a section of π. As a result, we will have that $R \otimes_{R[I]}\left(R[I] \otimes_{R} B\right)=B$ as r goes to r going from right to left. Moreover note that g is flat as it arises from base change of a flat morphism. Thus $R[I] \rightarrow R[I] \otimes_{R} B \in \operatorname{Def}_{X}^{\text {smooth }}(R, \pi)$. Also note that we have $R[I] \otimes_{R} B \cong B\left[I \otimes_{R} B\right]$ using the (injective) section $s_{B}: B \rightarrow R[I] \otimes_{R} B, b \mapsto 1 \otimes b$ and applying Lemma 1.1.

Now suppose that $D \in \operatorname{Def}_{X}^{\text {smooth }}(R[I], \pi)$. so that the following diagram is co-Cartesian.

This means we have a R-linear ring isomorphism $\Phi: R \otimes_{R[I]} D \xrightarrow{\sim} B$. Writing $R=R[I] / I$, we obtain a surjective map $\Phi^{\prime}: D \rightarrow D / I D \cong B$ whose kernel $I D$ is square-zero. Because we have a section s_{R} of π, we can replace π with s_{R} and the diagram above still commutes. As a result we have the following solid commutative diagram

[^0]

But $R \rightarrow B$ is smooth and thus formally smooth and so we obtain a map $s: B \rightarrow D$ which commutes above, aka s is a section of Φ^{\prime}. Because B is a flat R module, and D is a flat $R[I]$ module, we have that $I \otimes_{R} B=I B$ and $I \otimes_{R[I]} D=I D$ and so we have the following commutative diagram where the middle map is a ring homomorphism (similar to Lemma 1.1)

where $\Psi\left(b, i \otimes b^{\prime}\right)=s(b)+i \cdot s\left(b^{\prime}\right)$. We claim that $i d \otimes s(b)$ is an isomorphism. Indeed one can check that $i d \otimes \Phi^{\prime}$ will be the reverse map and we have that $i \otimes d \mapsto i \otimes \Phi^{\prime}(d) \mapsto i \otimes s\left(\Phi^{\prime}(d)\right)=i \otimes d$ where the last step is because $s\left(\Phi^{\prime}(d)\right)=d+\sum i^{\prime} \cdot d^{\prime}$ and I is square-zero. Hence we can apply 5 lemma to conclude. Like in Lemma 1.1 we can also show that the inverse map Ψ^{-1} is given by

$$
\Psi^{-1}(d)=\left(\Phi^{\prime}(d),\left(\operatorname{id} \otimes \Phi^{\prime}\right)\left(d-s \circ \Phi^{\prime}(d)\right)\right)
$$

where we first write $d-s \circ \Phi^{\prime}(d) \in \operatorname{ker} \Phi^{\prime} \cong I \otimes_{R[I]} D$ and then apply id $\otimes \Phi^{\prime}$.
Lemma 1.4. Let $q: B^{\prime} \rightarrow B$ be a surjective homomorphism of k-algebras with square-zero kernel I

$$
0 \longrightarrow I \longrightarrow B^{\prime} \longrightarrow B \longrightarrow 0
$$

Then we have that
(a) If $f, g: B \rightarrow B^{\prime}$ are two sections of q, then $\theta=g-f$ is a k-derivation of R to I,
(b) Conversely, if $f: R \rightarrow B^{\prime}$ is one section, and $\theta: R \rightarrow I$ is a derivation, then $g=f+\theta$ is another section of q.

Remark. Note that (b) says that $\operatorname{Der}_{k}(R, I)(a)$ acts on sections of q and since the operation is addition of functions, the action has to be free, while (a) says that the action of is transitive and so sections of q is a torsor for the action of $\operatorname{Der}_{k}(R, I)$.

2 General Case

Theorem 1

Assume X is a smooth R scheme and I is a flat R-module. Then there is a bijection

$$
\operatorname{Def}_{X}^{\mathrm{smooth}}(R[I]) \xrightarrow{\sim} H^{1}\left(X, \mathcal{T}_{X / R} \otimes_{R} I\right)
$$

Proof. Suppose we have a deformation $X^{\prime} \in \operatorname{Def}_{X}(R[I])$. Then the following diagram is Cartesian

Because the underlying topological space of X^{\prime} is the same as X, given an open affine cover $\left\{U_{k}=\operatorname{Spec} B_{k}\right\}$ of X, we obtain an open affine cover $\left\{U_{k}^{\prime}=\operatorname{Spec} D_{k}\right\}$ for X^{\prime}, each U_{k}^{\prime} will fit into the top right corner of the above diagram. By Proposition 1.3 we can trivialize the deformation D_{k}, aka we have $R[I]$ linear ring isomorphisms

$$
\varphi_{k}: R[I] \otimes_{R} B_{k} \rightarrow D_{k}
$$

such that modulo I, φ_{k} will be the identity on $B_{k}{ }^{2}$. Now WLOG, assume that $U_{k j}^{\prime}=U_{k}^{\prime} \cap U_{j}^{\prime}$ is a distinguished open for both U_{k} and U_{j} (See [Vakil] Proposition 5.3.1) and let $U_{k}=\operatorname{Spec} B_{k j}, U_{k j}^{\prime}=$ Spec $D_{k j}$. It follows that both $\left.\varphi_{k}\right|_{U_{k j}^{\prime}},\left.\varphi_{j}\right|_{U_{k j}^{\prime}}: R[I] \otimes_{R} B_{k j} \rightarrow D_{k j}$ induce the identity on $B_{k j}$ being a localization and so $\varphi_{j}^{-1} \circ \varphi_{k}: R[I] \otimes_{R} B_{k j} \rightarrow R[I] \otimes_{R} B_{k j}$ is a ring automorphism satisfying the conditions in Proposition 1.2 and thus

$$
\begin{equation*}
\varphi_{j}^{-1} \circ \varphi_{k}\left(b, i \otimes b^{\prime}\right)=\left(b, \alpha_{k j}(b)+i \otimes b^{\prime}\right) \tag{1}
\end{equation*}
$$

where $\alpha_{k j} \in \operatorname{Der}_{R}\left(B_{k j}, I \otimes_{R} B_{k j}\right)$. But by definition,

$$
\mathcal{T}_{X} \otimes_{R} I\left(B_{k j}\right)=\operatorname{Hom}_{B_{k j}}\left(\Omega_{B_{k j} / R}^{1}, B_{k j}\right) \otimes_{R} I \xlongequal{*} \operatorname{Hom}_{B_{k j}}\left(\Omega_{B_{k j} / R}^{1}, I \otimes_{R} B_{k j}\right)=\operatorname{Der}_{R}\left(B_{k j}, I \otimes_{R} B_{k j}\right)
$$

where the equality $*$ is because for any R-module $K, K \otimes_{R} I=K \otimes_{B}\left(B \otimes_{R} I\right)$ and since I is a flat R-module, it follows that $B \otimes_{R} I$ is a flat B module as $R \rightarrow B$ is flat, and now let $N=B_{k j} \otimes_{R} I$ in

$$
\operatorname{Ext}_{B}^{p}(M, B) \otimes_{B} N \cong \operatorname{Ext}_{B}^{p}(M, N)
$$

(see Poincare duality in Hochschild cohomology). Thus $\alpha_{k j} \in H^{0}\left(B_{k j}, \mathcal{T}_{X} \otimes_{R} I\right)$. Since $\varphi_{\ell}^{-1} \circ \varphi_{j} \circ \varphi_{j}^{-1} \circ$ $\varphi_{k}=\varphi_{\ell}^{-1} \circ \varphi_{k}$, it follows that

$$
\left(b, \alpha_{j \ell}(b)+\alpha_{k j}(b)+i \otimes b^{\prime}\right)=\left(b, \alpha_{k \ell}(b)+i \otimes b^{\prime}\right)
$$

so that the collection $\left\{\alpha_{k j}\right\}$ (which depend on the $\left.\varphi_{k}\right)$ is in $Z^{1}\left(\mathscr{U}, \mathcal{T}_{X} \otimes_{R} I\right)$. Two deformations are isomorphic if we choose different isomorphisms φ_{k} on each affine open. Each φ_{k} is defined using a section $s_{k}: B_{k} \rightarrow D_{k}$ of $\pi_{k}: D_{k} \rightarrow B_{k}$. Let φ_{k}^{\prime} be defined using another section s_{k}^{\prime} and φ_{j}^{\prime} be defined using another section s_{j}^{\prime}. Let $\theta_{k}=s_{k}^{\prime}-s_{k} \in \operatorname{Der}_{R}\left(B_{k}, I \otimes_{R} B_{k}\right)$ and $\theta_{j} \in \operatorname{Der}_{R}\left(B_{j}, I \otimes_{R} B_{j}\right)$. One can then compute that $\left(\varphi_{k}^{\prime}-\varphi_{k}\right)\left(b, i \otimes b^{\prime}\right)=\theta_{k}(b)$ while $\left.\left(\varphi_{j}^{\prime}\right)^{-1}-\varphi_{j}^{-1}\right)(d)=\left(0,-\theta_{j}\left(\pi_{j}(d)\right)\right)$.

$$
\left(\left(\varphi_{j}^{\prime}\right)^{-1} \circ \varphi_{k}^{\prime}-\varphi_{j}^{-1} \circ \varphi_{k}\right)\left(b, i \otimes b^{\prime}\right)=\left(0,\left.\theta_{k}(b)\right|_{B_{k j}}-\left.\theta_{j}(b)\right|_{B_{k j}}\right)=\left(0, \alpha_{k j}^{\prime}(b)-\alpha_{k j}(b)\right)
$$

where we used that $\left.\pi_{j}\right|_{B_{k j}}=\left.\pi_{k}\right|_{B_{k j}}$. The term in the middle is exactly d of an element in $B^{0}\left(\mathscr{U}, \mathcal{T}_{X} \otimes_{R} I\right)$ and so we obtain

$$
\begin{aligned}
K S: \operatorname{Def}_{X}^{\text {smooth }}(R[I]) & \rightarrow H^{1}\left(X, \mathcal{T}_{X / R} \otimes_{R} I\right) \\
X^{\prime} & \mapsto\left\{\alpha_{k j}\right\}
\end{aligned}
$$

Conversely, given a collection $\left\{\alpha_{k j}\right\}$, because they satisfy the cocycle condition, $\varphi_{j k}:=\varphi_{j}^{-1} \circ \varphi_{k}$ as defined in Eq. (1) will satisfy another cocycle condition necessary to glue together trivial deformations on the affine open sets to form a scheme X^{\prime}. One can check these are inverses to each other.

Remark. $K S$ is called the Kodaira-Spencer map and $\left\{\alpha_{k j}\right\}$ is called the Kodaira-Spencer class of $X^{\prime} \in \operatorname{Def}_{X}^{\text {smooth }}(R[I])$.

[^1]
3 Obstructions

Definition 3.1. Given a functor $F:$ Art $_{k} \rightarrow$ Set an obstruction theory for F taking values in a k-vector space V consists of the data, for each thickening $\varphi: A^{\prime} \rightarrow A$ with kernel I, a map ob $(\varphi): F(A) \rightarrow V \otimes_{k} I$ such that
(i) For $\eta \in F(A)$, ob $(\varphi)(\eta)=0 \Longleftrightarrow \exists \eta^{\prime} \in F\left(A^{\prime}\right)$ such that $F(\varphi)\left(\eta^{\prime}\right)=\eta$.
(ii) (naturality) Given a factoring of φ into a sequence of thickenings, $A^{\prime} \longrightarrow B \longrightarrow \psi A$ with the kernel of ψ equal to I / J we have that the following diagram commutes

Given $f: X^{\prime} \rightarrow \operatorname{Spec} A$ a smooth morphism and $A^{\prime} \rightarrow A$ a surjection of rings whose kernel J is square-zero, when can we find a lift $X^{\prime \prime}$ s.t. the following diagram is Cartesian

Fix a affine cover $\left\{V_{k}=\operatorname{Spec} D_{k}\right\}$ of X^{\prime} by affines. Applying Proposition 1.3 we can obtain a lifting V_{k}^{\prime} over A^{\prime}. Now suppose for each pair (j, k) we choose isomorphisms

$$
\psi_{j k}:\left.\left.V_{j}^{\prime}\right|_{V_{j k}} \rightarrow V_{k}^{\prime}\right|_{V_{j k}}
$$

lifting the map $\left.\left.V_{j}\right|_{V_{j k}} \rightarrow V_{k}\right|_{V_{j k}}$. Then it's not always true that the collection $\left\{\psi_{j k}\right\}$ will satisfy the cocycle condition. So on triple overlaps, define

$$
C_{j k \ell}=\psi_{k \ell} \circ \psi_{j k} \circ \psi_{j \ell}^{-1}
$$

This will be a A^{\prime} linear automorphism of $\left.V_{\ell}^{\prime}\right|_{V_{j k \ell}}=\operatorname{Spec} A^{\prime} \otimes_{A} D_{j k \ell}$ (again can assume that $V_{j k \ell}=$ Spec $D_{j k \ell}$ is affine) which reduces to the identity modulo J as X^{\prime} is a scheme. Therefore we can apply Proposition 1.2 to

$$
0 \rightarrow J \otimes_{A} D_{j k \ell} \rightarrow A^{\prime} \otimes_{A} D_{j k \ell} \rightarrow D_{j k \ell} \rightarrow 0
$$

to see that

$$
C_{j k \ell}\left(d, j \otimes d^{\prime}\right)=\left(d, \beta_{j k \ell}(d)+j \otimes d^{\prime}\right)
$$

where $\beta_{j k \ell} \in \operatorname{Der}_{A}\left(D_{j k \ell}, J \otimes_{A} D_{j k \ell}\right)=\left(\mathcal{T}_{X^{\prime} / A} \otimes_{A} J\right)\left(D_{j k \ell}\right)$.
Lemma 3.2. (a) The collection $\left\{\beta_{j k \ell}\right\} \in Z^{2}\left(\mathscr{U}, \mathcal{T}_{X^{\prime} / A} \otimes_{A} J\right)$.
(b) If $\left\{\psi_{j k}^{\prime}\right\}$ is any other choice of isomorphisms with corresponding $\left\{\beta_{j k \ell}^{\prime}\right\}$ then $\left\{\beta_{j k}\right\}-\left\{\beta_{j k}^{\prime}\right\} \in$ $B^{2}\left(\mathscr{U}, \mathcal{T}_{X^{\prime} / A} \otimes_{A} J\right)$.
Thus for any smooth $f: X^{\prime} \rightarrow \operatorname{Spec} A$ we obtain a well defined class $o(f) \in H^{2}\left(X^{\prime}, \mathcal{T}_{X^{\prime} / A} \otimes_{A} J\right)$.

Proposition 3.3. There exists a lifting $X^{\prime \prime} \rightarrow \operatorname{Spec} A^{\prime} \Longleftrightarrow o(f)=0$.
Proof. Being in $B^{2}\left(\mathscr{U}, \mathcal{T}_{X^{\prime} / A} \otimes_{A} J\right)$ is essentially saying you are 1 up to automorphisms.
Example. Let $X^{\prime} \in \operatorname{Def}_{X}^{\text {smooth }}(k[\epsilon])$, and consider the surjection $k[x] /\left(x^{3}\right) \rightarrow k[\epsilon]=k[x] /\left(x^{2}\right)$ with kernel $J=\left(x^{2}\right) /\left(x^{3}\right)=k$. Then we have that the obstruction to lifting X^{\prime} to a higher order deformation lives in

$$
H^{2}\left(X^{\prime}, T_{X^{\prime} / k[\epsilon]} \otimes_{k[\epsilon]}\left(x^{2}\right) /\left(x^{3}\right)\right) \cong H^{2}\left(X, T_{X / k} \otimes_{k} k\right)
$$

where the isomorphism above is because on affine pieces for any $k[\epsilon]$ module M

$$
M \otimes_{k[\epsilon]}\left(x^{2}\right) /\left(x^{3}\right) \cong M /(x) \otimes_{k[\epsilon] /(x)}\left(x^{2}\right) /\left(x^{3}\right)
$$

4 Examples

Theorem 2 (Computation of Cohomology for Curves)

Let C be a smooth projective curve, $T=T_{X}$ the tangent sheaf and $K=\Omega_{C}^{1}$ the canonical sheaf. Then we have

	deg	h^{0}	h^{1}	h^{2}
K	$2 g-2$	g	1	0
T	$2-2 g$	ϵ	$\epsilon+3 g-3$	0

where $\epsilon=0$ if $g \geq 2, \epsilon=1$ if $g=1$, and $\epsilon=3$ if $g=0$.

Proof. Plugging in $D=K$ in Riemann Roch we obtain

$$
h^{0}(K)-1=\operatorname{deg}(K)-g+1
$$

and note that $h^{0}(K)=g$ as this is the dimension of the differential forms on C which is the rank of the first homology group and thus is g and so $\operatorname{deg}(K)=2 g-2$. As T is the dual of K we have that $\operatorname{deg}(T)=2-2 g$. By Riemann-Roch we will have that

$$
h^{1}(T)=\epsilon-\operatorname{deg}(T)+g-1=3 g-3+\epsilon
$$

so it remains to compute $h^{0}(T)$. Notice that for $g \geq 2$ we have that $\operatorname{deg} T<0$ and therefore $h^{0}(T)=0$. For $g=1$, notice that $h^{0}(K)=1$ and $\operatorname{deg}(K)=0$. It follows that $K=\mathcal{O}_{C}$, indeed $h^{0}(K)=1$ means we have a non-zero (holomorphic) section s of K and such a section cannot have poles. $\operatorname{deg}(K)=0$ will then imply it can't have any zeros as well and so gives our desired isomorphism. It follows that $T=\mathcal{O}_{X}$ and so $\epsilon=1$. For $g=0$, note that $\operatorname{deg}(K)<0$ and so $\operatorname{deg}\left(K^{2}\right)<0$ and thus by Serre duality $h^{1}(T)=h^{0}\left(K^{2}\right)=0$ and so $\epsilon=3$ as desired.

Theorem 4.1. $h^{1}\left(\mathbb{P}_{A}^{n}\right)=0$.
Proof. Let $\mathcal{O}=\mathcal{O}_{\mathbb{P}^{n}}$. Consider the Euler sequence

$$
0 \rightarrow \mathcal{O} \rightarrow \mathcal{O}(1)^{\oplus n+1} \rightarrow \mathcal{T}_{\mathbb{P}^{n}} \rightarrow 0
$$

From the LES the following is exact

$$
H^{1}\left(\mathcal{O}(1)^{\oplus n+1}\right) \rightarrow H^{1}\left(\mathcal{T}_{\mathbb{P}^{n}}\right) \rightarrow H^{2}(\mathcal{O})
$$

and the left and rightmost terms are 0 since non-negative degree line bundles have no higher cohomology.

[^0]: ${ }^{1}$ Such a map may not exist, for example, consider $f: \mathbb{Z} / p^{2} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ where $f(1)=1$. The kernel will be $p\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$ which is a square-zero ideal. Any ring homomorphism back must send 1 to a multiple of p but then this is clearly not a section.

[^1]: ${ }^{2}$ The isomorphism was induced by a section.

