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1 The Affine Case

Lemma 1.1. Let f : C ↠ R be an object of A−Alg/R and let suppose I, the kernel of f , is a square-zero

ideal in C. Then any ring homomorphism that is a section s : R → C1 will give a ring isomorphism

σ : R[I]
∼−→ C where σ(r, i) = s(r) + i with inverse σ−1(c) = (f(c), c− sf(c))

Proposition 1.2. Suppose we have a surjection C ↠ R with square zero kernel I and suppose we have

a ring automorphism of the form

0 I C R 0

0 I C R 0

id φ id

Then φ must be of the form φ(i+ r) = i+ r+ δ(r) where i ∈ I, r ∈ R and δ : R→ I. Furthermore δ is

a derivation.

Proof. We know φ(i) = i while φ(r) = r mod I and so φ(r) = r + δ(r) for δ : R→ I.

Proposition 1.3. Suppose that X = SpecB is a smooth affine R−scheme and π : R[I] ↠ R with

kernel I. Then Defsmooth
X (R, π) consists of one element.

Proof. We first give an element of Defsmooth
X (R[I], π). Consider g : R[I] → R[I] ⊗R B where (r, i) 7→

(r, i) ⊗ 1 and where R → R[I] by r 7→ (r, 0), so is a section of π. As a result, we will have that

R⊗R[I] (R[I]⊗R B) = B as r goes to r going from right to left. Moreover note that g is flat as it arises

from base change of a flat morphism. Thus R[I] → R[I] ⊗R B ∈ Defsmooth
X (R, π). Also note that we

have R[I]⊗R B ∼= B[I ⊗R B] using the (injective) section sB : B → R[I]⊗R B, b 7→ 1⊗ b and applying

Lemma 1.1.

Now suppose that D ∈ Defsmooth
X (R[I], π). so that the following diagram is co-Cartesian.

B D

R R[I]

a

π

This means we have a R−linear ring isomorphism Φ : R⊗R[I] D
∼−→ B. Writing R = R[I]/I, we obtain

a surjective map Φ′ : D ↠ D/ID ∼= B whose kernel ID is square-zero. Because we have a section sR of

π, we can replace π with sR and the diagram above still commutes. As a result we have the following

solid commutative diagram

1Such a map may not exist, for example, consider f : Z/p2Z → Z/pZ where f(1) = 1. The kernel will be p(Z/p2Z)
which is a square-zero ideal. Any ring homomorphism back must send 1 to a multiple of p but then this is clearly not a

section.
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B B = D/I

R D

id

a◦sR

Φ′

But R → B is smooth and thus formally smooth and so we obtain a map s : B → D which commutes

above, aka s is a section of Φ′. Because B is a flat R module, and D is a flat R[I] module, we have that

I ⊗RB = IB and I ⊗R[I]D = ID and so we have the following commutative diagram where the middle

map is a ring homomorphism (similar to Lemma 1.1)

0 I ⊗R B B[I ⊗R B] B 0

0 I ⊗R[I] D D B 0

id⊗s(b) Ψ

modI⊗RB

id

i·d Φ′

where Ψ(b, i ⊗ b′) = s(b) + i · s(b′). We claim that id ⊗ s(b) is an isomorphism. Indeed one can check

that id⊗ Φ′ will be the reverse map and we have that i⊗ d 7→ i⊗ Φ′(d) 7→ i⊗ s(Φ′(d)) = i⊗ d where

the last step is because s(Φ′(d)) = d+
∑

i′ · d′ and I is square-zero. Hence we can apply 5 lemma to

conclude. Like in Lemma 1.1 we can also show that the inverse map Ψ−1 is given by

Ψ−1(d) = (Φ′(d), (id⊗ Φ′)(d− s ◦ Φ′(d)))

where we first write d− s ◦ Φ′(d) ∈ kerΦ′ ∼= I ⊗R[I] D and then apply id⊗ Φ′.

Lemma 1.4. Let q : B′ → B be a surjective homomorphism of k−algebras with square-zero kernel I

0 I B′ B 0

Then we have that

(a) If f, g : B → B′ are two sections of q, then θ = g − f is a k−derivation of R to I,

(b) Conversely, if f : R→ B′ is one section, and θ : R→ I is a derivation, then g = f + θ is another

section of q.

Remark. Note that (b) says that Derk(R, I) (a) acts on sections of q and since the operation is addition

of functions, the action has to be free, while (a) says that the action of is transitive and so sections of

q is a torsor for the action of Derk(R, I).

2 General Case

Theorem 1

Assume X is a smooth R scheme and I is a flat R−module. Then there is a bijection

Defsmooth
X (R[I])

∼−→ H1(X, TX/R ⊗R I)

Proof. Suppose we have a deformation X ′ ∈ DefX(R[I]). Then the following diagram is Cartesian

X X ′

SpecR SpecR[I]
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Because the underlying topological space ofX ′ is the same asX, given an open affine cover {Uk = SpecBk}
of X, we obtain an open affine cover

{
U ′
k = SpecDk

}
for X ′, each U ′

k will fit into the top right corner

of the above diagram. By Proposition 1.3 we can trivialize the deformation Dk, aka we have R[I] linear

ring isomorphisms

φk : R[I]⊗R Bk → Dk

such that modulo I, φk will be the identity on Bk
2. Now WLOG, assume that U ′

kj = U ′
k ∩ U ′

j is a

distinguished open for both Uk and Uj(See [Vakil] Proposition 5.3.1) and let Uk = SpecBkj , U
′
kj =

SpecDkj . It follows that both φk|U ′
kj
, φj |U ′

kj
: R[I] ⊗R Bkj → Dkj induce the identity on Bkj being

a localization and so φ−1
j ◦ φk : R[I] ⊗R Bkj → R[I] ⊗R Bkj is a ring automorphism satisfying the

conditions in Proposition 1.2 and thus

φ−1
j ◦ φk(b, i⊗ b′) = (b, αkj(b) + i⊗ b′) (1)

where αkj ∈ DerR(Bkj , I ⊗R Bkj). But by definition,

TX ⊗R I(Bkj) = HomBkj
(Ω1

Bkj/R
, Bkj)⊗R I

∗
== HomBkj

(Ω1
Bkj/R

, I ⊗R Bkj) = DerR(Bkj , I ⊗R Bkj)

where the equality ∗ is because for any R−module K, K ⊗R I = K ⊗B (B ⊗R I) and since I is a flat

R−module, it follows that B ⊗R I is a flat B module as R→ B is flat, and now let N = Bkj ⊗R I in

ExtpB(M,B)⊗B N ∼= ExtpB(M,N)

(see Poincare duality in Hochschild cohomology). Thus αkj ∈ H0(Bkj , TX ⊗R I). Since φ
−1
ℓ ◦φj ◦φ−1

j ◦
φk = φ−1

ℓ ◦ φk, it follows that

(b, αjℓ(b) + αkj(b) + i⊗ b′) = (b, αkℓ(b) + i⊗ b′)

so that the collection {αkj} (which depend on the φk) is in Z1(U , TX ⊗R I). Two deformations are

isomorphic if we choose different isomorphisms φk on each affine open. Each φk is defined using a

section sk : Bk → Dk of πk : Dk → Bk. Let φ′
k be defined using another section s′k and φ′

j be defined

using another section s′j . Let θk = s′k − sk ∈ DerR(Bk, I ⊗R Bk) and θj ∈ DerR(Bj , I ⊗R Bj). One can

then compute that (φ′
k − φk)(b, i⊗ b′) = θk(b) while (φ′

j)
−1 − φ−1

j )(d) = (0,−θj(πj(d))).(
(φ′

j)
−1 ◦ φ′

k − φ−1
j ◦ φk

)
(b, i⊗ b′) = (0, θk(b)|Bkj

− θj(b)|Bkj
) = (0, α′

kj(b)− αkj(b))

where we used that πj |Bkj
= πk|Bkj

. The term in the middle is exactly d of an element in B0(U , TX⊗RI)

and so we obtain

KS : Defsmooth
X (R[I]) → H1(X, TX/R ⊗R I)

X ′ 7→ {αkj}

Conversely, given a collection {αkj}, because they satisfy the cocycle condition, φjk := φ−1
j ◦ φk as

defined in Eq. (1) will satisfy another cocycle condition necessary to glue together trivial deformations

on the affine open sets to form a scheme X ′. One can check these are inverses to each other.

Remark. KS is called the Kodaira-Spencer map and {αkj} is called the Kodaira-Spencer class of

X ′ ∈ Defsmooth
X (R[I]).

2The isomorphism was induced by a section.
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3 Obstructions

Definition 3.1. Given a functor F : Artk → Set an obstruction theory for F taking values in a k−vector

space V consists of the data, for each thickening φ : A′ → A with kernel I, a map ob(φ) : F (A) → V ⊗k I

such that

(i) For η ∈ F (A), ob(φ)(η) = 0 ⇐⇒ ∃η′ ∈ F (A′) such that F (φ)(η′) = η.

(ii) (naturality) Given a factoring of φ into a sequence of thickenings,
A′ B A

φ

ψ with

the kernel of ψ equal to I/J we have that the following diagram commutes

F (A) V ⊗k I

V ⊗k I/J

ob(φ)

ob(ψ)

Given f : X ′ → SpecA a smooth morphism and A′ ↠ A a surjection of rings whose kernel J is

square-zero, when can we find a lift X ′′ s.t. the following diagram is Cartesian

X ′ X ′′

SpecR SpecA′

Fix a affine cover {Vk = SpecDk} of X ′ by affines. Applying Proposition 1.3 we can obtain a lifting V ′
k

over A′. Now suppose for each pair (j, k) we choose isomorphisms

ψjk : V
′
j |Vjk → V ′

k|Vjk

lifting the map Vj |Vjk → Vk|Vjk . Then it’s not always true that the collection {ψjk} will satisfy the

cocycle condition. So on triple overlaps, define

Cjkℓ = ψkℓ ◦ ψjk ◦ ψ−1
jℓ

This will be a A′ linear automorphism of V ′
ℓ |Vjkℓ = SpecA′ ⊗A Djkℓ (again can assume that Vjkℓ =

SpecDjkℓ is affine) which reduces to the identity modulo J as X ′ is a scheme. Therefore we can apply

Proposition 1.2 to

0 → J ⊗A Djkℓ → A′ ⊗A Djkℓ → Djkℓ → 0

to see that

Cjkℓ(d, j ⊗ d′) = (d, βjkℓ(d) + j ⊗ d′)

where βjkℓ ∈ DerA(Djkℓ, J ⊗A Djkℓ) = (TX′/A ⊗A J)(Djkℓ).

Lemma 3.2. (a) The collection {βjkℓ} ∈ Z2(U , TX′/A ⊗A J).

(b) If
{
ψ′
jk

}
is any other choice of isomorphisms with corresponding

{
β′jkℓ

}
then {βjk} −

{
β′jk

}
∈

B2(U , TX′/A ⊗A J).

Thus for any smooth f : X ′ → SpecA we obtain a well defined class o(f) ∈ H2(X ′, TX′/A ⊗A J).
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Proposition 3.3. There exists a lifting X ′′ → SpecA′ ⇐⇒ o(f) = 0.

Proof. Being in B2(U , TX′/A ⊗A J) is essentially saying you are 1 up to automorphisms.

Example. Let X ′ ∈ Defsmooth
X (k[ϵ]), and consider the surjection k[x]/(x3) ↠ k[ϵ] = k[x]/(x2) with

kernel J = (x2)/(x3) = k. Then we have that the obstruction to lifting X ′ to a higher order deformation

lives in

H2(X ′, TX′/k[ϵ] ⊗k[ϵ] (x
2)/(x3)) ∼= H2(X,TX/k ⊗k k)

where the isomorphism above is because on affine pieces for any k[ϵ] module M

M ⊗k[ϵ] (x
2)/(x3) ∼=M/(x)⊗k[ϵ]/(x) (x

2)/(x3)

4 Examples

Theorem 2 (Computation of Cohomology for Curves)

Let C be a smooth projective curve, T = TX the tangent sheaf and K = Ω1
C the canonical sheaf.

Then we have

deg h0 h1 h2

K 2g − 2 g 1 0

T 2− 2g ϵ ϵ+ 3g − 3 0

where ϵ = 0 if g ≥ 2, ϵ = 1 if g = 1, and ϵ = 3 if g = 0.

Proof. Plugging in D = K in Riemann Roch we obtain

h0(K)− 1 = deg(K)− g + 1

and note that h0(K) = g as this is the dimension of the differential forms on C which is the rank of

the first homology group and thus is g and so deg(K) = 2g − 2. As T is the dual of K we have that

deg(T ) = 2− 2g. By Riemann-Roch we will have that

h1(T ) = ϵ− deg(T ) + g − 1 = 3g − 3 + ϵ

so it remains to compute h0(T ). Notice that for g ≥ 2 we have that deg T < 0 and therefore h0(T ) = 0.

For g = 1, notice that h0(K) = 1 and deg(K) = 0. It follows that K = OC , indeed h
0(K) = 1 means

we have a non-zero (holomorphic) section s of K and such a section cannot have poles. deg(K) = 0

will then imply it can’t have any zeros as well and so gives our desired isomorphism. It follows that

T = OX and so ϵ = 1. For g = 0, note that deg(K) < 0 and so deg(K2) < 0 and thus by Serre duality

h1(T ) = h0(K2) = 0 and so ϵ = 3 as desired.

Theorem 4.1. h1(PnA) = 0.

Proof. Let O = OPn . Consider the Euler sequence

0 → O → O(1)⊕n+1 → TPn → 0

From the LES the following is exact

H1(O(1)⊕n+1) → H1(TPn) → H2(O)

and the left and rightmost terms are 0 since non-negative degree line bundles have no higher cohomology.
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